Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1-Oxo-6-(2-phenylacetylamino)-1-penicillanic acid

Er-Hong Duan,^a Di-Shun Zhao,^{b*} Juan Wang^a and Mei-Ling Li^a

^aSchool of Chemical Engineering and Technology of Tianjin University, Tianjin 300072, People's Republic of China, and ^bSchool of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang Hebei 050018, People's Republic of China

Correspondence e-mail: dandinlion@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C-C}) = 0.006 \text{ Å}$ R factor = 0.038 wR factor = 0.082Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The crystal structure of the title compound (CAS: 4052–54-4), $C_{16}H_{18}N_2O_5S$, contains $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds. The four-membered ring is folded and the five-membered ring has an envelope conformation.

Received 8 June 2006 Accepted 29 June 2006

Comment

The title compound, (I), is an early derivative of penicillin which was prepared by Rogers & Folkers (1946). Penicillin G sulfoxide, which is the common name of 1-oxo-6-(2-phenylacetylamino)-1-penicillanic acid, decomposes at higher temperatures (>333 K), because it has an unsaturated S—O bond. It is an important intermediate in the synthesis of 7-aminodeacetoxy-cefalosporanic acid (7-ADCA) (Pan *et al.* 2001).

Selected bond lengths and angles are listed in Table 1. The four-membered ring (C9–C11,N2) is folded and the five-membered ring (C10,N2,C12,S1,C14) has an envelope conformation. The crystal structure contains intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (Table 2), giving an infinite three-dimensional network. An intramolecular $N-H\cdots O$ interaction forms a six-membered ring, which also has an envelope conformation, with atom N2 as the flap.

Experimental

1-Oxo-6-(2-phenylacetylamino)-1-penicillanic acid was synthesized according to the method described by Chow *et al.* (1962). Colorless single crystals of (I) were grown by slow evaporation of a methanol solution.

Crystal data

 $C_{16}H_{18}N_2O_5S$ $M_r = 350.38$ Trigonal, $P3_2$ a = 11.6285 (12) Å c = 10.894 (2) Å V = 1275.7 (3) Å³ Z = 3 $D_x = 1.368 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 294 (2) KBlock, colourless $0.22 \times 0.16 \times 0.12 \text{ mm}$

© 2006 International Union of Crystallography All rights reserved

organic papers

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{\min} = 0.943, T_{\max} = 0.974$

6825 measured reflections 2703 independent reflections 1994 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.043$ $\theta_{\rm max} = 25.5^{\circ}$

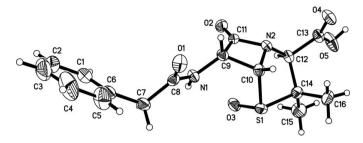
Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.082$ S = 1.012703 reflections 220 parameters H-atom parameters constrained
$$\begin{split} w &= 1/[\sigma^2(F_o^{\ 2}) + (0.0359P)^2] \\ \text{where } P &= (F_o^{\ 2} + 2F_c^{\ 2})/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.003 \\ \Delta\rho_{\text{max}} &= 0.18 \text{ e Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.16 \text{ e Å}^{-3} \\ \text{Absolute structure: Flack (1983),} \\ 1116 \text{ Freidel pairs} \\ \text{Flack parameter: } -0.04 \text{ (8)} \end{split}$$

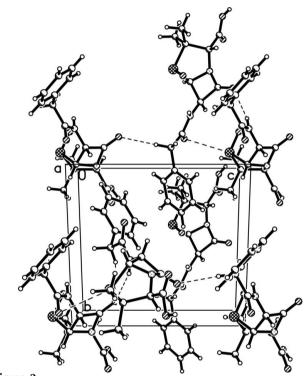
 Table 1

 Selected geometric parameters (\mathring{A} , °).

O1-C8	1.223 (4)	C7-C8	1.504 (4)
O4-C13	1.182 (4)	C12-C13	1.512 (4)
C1-C2	1.371 (5)	C14-C16	1.520 (5)
O3-S1-C10	103.47 (13)	C11-N2-C12	124.2 (2)
O3-S1-C14	105.21 (15)	C10-N2-C12	116.6 (2)
C10-S1-C14	89.03 (14)	C3-C2-C1	119.1 (5)
C4-C5-C6-C7	179.3 (4)	C6-C7-C8-O1	36.7 (5)
C1-C6-C7-C8	99.7 (4)	C8-N1-C9-C10	105.6 (3)
C9-N1-C8-O1	2.7 (4)	C10-N2-C12-C14	3.1 (3)


Table 2 Hydrogen-bond geometry (Å, °).

D $ H$ \cdots A	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
$\begin{matrix} O5-H5\cdots O1^{i} \\ N1-H1\cdots O2^{ii} \end{matrix}$	0.82 0.86	1.79 2.33	2.597 (3) 3.142 (3)	166 157
$N1-H1\cdots O3$	0.86	2.40	2.844 (3)	113


Symmetry codes: (i) -x + y + 1, -x + 1, $z + \frac{1}{3}$; (ii) -y + 1, x - y + 1, $z - \frac{1}{3}$.

The H atom of the OH group was initially located in a difference Fourier map, but subsequently the O—H distance was constrained to 0.82 Å and the $U_{\rm iso}({\rm H})$ value set equal to $1.2U_{\rm eq}({\rm O})$. All other H atoms were positioned geometrically (N—H = 0.86, C—H = 0.93–0.98 Å) and refined as riding, with $U_{\rm iso}({\rm H})$ = 1.2 or 1.5 times $U_{\rm eq}({\rm parent\ atom})$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Figure 1The molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Packing diagram for (I), with hydrogen bonds shown as dashed lines.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Chow, A. W., Hall, N. M. & Hoover, J. R. E. (1962). J. Org. Chem. 27, 1381– 1383.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Pan, X. J., Liu, H. Z., An, Z. T., Wang, J. & Niu, G. G. (2001). *Int. J. Pharm.* **220**, 33–41.

Rogers, E. F. & Folkers, K. (1946). US Patent No. 2 483 235.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.